Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Research on robotic lower-limb assistive devices over the past decade has generated autonomous, multiple degree-of-freedom devices to augment human performance during a variety of scenarios. However, the increase in capabilities of these devices is met with an increase in the complexity of the overall control problem and requirement for an accurate and robust sensing modality for intent recognition. Due to its ability to precede changes in motion, surface electromyography (EMG) is widely studied as a peripheral sensing modality for capturing features of muscle activity as an input for control of powered assistive devices. In order to capture features that contribute to muscle contraction and joint motion beyond muscle activity of superficial muscles, researchers have introduced sonomyography, or real-time dynamic ultrasound imaging of skeletal muscle. However, the ability of these sonomyography features to continuously predict multiple lower-limb joint kinematics during widely varying ambulation tasks, and their potential as an input for powered multiple degree-of-freedom lower-limb assistive devices is unknown. The objective of this research is to evaluate surface EMG and sonomyography, as well as the fusion of features from both sensing modalities, as inputs to Gaussian process regression models for the continuous estimation of hip, knee and ankle angle and velocity during level walking, stair ascent/descent and ramp ascent/descent ambulation. Gaussian process regression is a Bayesian nonlinear regression model that has been introduced as an alternative to musculoskeletal model-based techniques. In this study, time-intensity features of sonomyography on both the anterior and posterior thigh along with time-domain features of surface EMG from eight muscles on the lower-limb were used to train and test subject-dependent and task-invariant Gaussian process regression models for the continuous estimation of hip, knee and ankle motion. Overall, anterior sonomyography sensor fusion with surface EMG significantly improved estimation of hip, knee and ankle motion for all ambulation tasks (level ground, stair and ramp ambulation) in comparison to surface EMG alone. Additionally, anterior sonomyography alone significantly improved errors at the hip and knee for most tasks compared to surface EMG. These findings help inform the implementation and integration of volitional control strategies for robotic assistive technologies.more » « less
-
null (Ed.)Clinical translation of “intelligent” lower-limb assistive technologies relies on robust control interfaces capable of accurately detecting user intent. To date, mechanical sensors and surface electromyography (EMG) have been the primary sensing modalities used to classify ambulation. Ultrasound (US) imaging can be used to detect user-intent by characterizing structural changes of muscle. Our study evaluates wearable US imaging as a new sensing modality for continuous classification of five discrete ambulation modes: level, incline, decline, stair ascent, and stair descent ambulation, and benchmarks performance relative to EMG sensing. Ten able-bodied subjects were equipped with a wearable US scanner and eight unilateral EMG sensors. Time-intensity features were recorded from US images of three thigh muscles. Features from sliding windows of EMG signals were analyzed in two configurations: one including 5 EMG sensors on muscles around the thigh, and another with 3 additional sensors placed on the shank. Linear discriminate analysis was implemented to continuously classify these phase-dependent features of each sensing modality as one of five ambulation modes. US-based sensing statistically improved mean classification accuracy to 99.8% (99.5-100% CI) compared to 8-EMG sensors (85.8%; 84.0-87.6% CI) and 5-EMG sensors (75.3%; 74.5-76.1% CI). Further, separability analyses show the importance of superficial and deep US information for stair classification relative to other modes. These results are the first to demonstrate the ability of US-based sensing to classify discrete ambulation modes, highlighting the potential for improved assistive device control using less widespread, less superficial and higher resolution sensing of skeletal muscle.more » « less
An official website of the United States government
